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i Presentation Outline

s The AJAX concept
= Analytical modeling
= The role of control

m Cost-to-go design for optimal control using Neural
Networks

= Implementation details
s Results
s State Feedback Control Architecture

s Conclusions
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i Analytical Model

= Assumptions:
= One-dimensional steady state flow
= Inviscid flow
= No reactive chemistry
= Low Magnetic Reynolds number

= Xx-t’ equivalence



Flow Equations

= Continuity Equation:

d( puA
(pud) =( P - Fluid density
dx u - Fluid velocity
A - Channel cross-section area

x - coordinate along the channel

= Force Equation:
P - Fluid pressure
du dP P

ou 4 _ _(1 _ k)O’I/le k - Load factor
dx dx o - Fluid conductivity

B - Magnetic field




Flow Equations...
= Energy Equation:

"
d(ye+ 7) - & - Fluid internal energy
ou » =—k(l-k)ou B+,

Qg - Energy deposited by

the e-beam

= Continuity Equation for the electron number
density:

d(n,u) _ 2)vE _ B’ n, - Electron number density
dx el .Z Jp - Electron beam current

&, - E-beam energy
/- Channel width



i The Role of Control

Electron beam current as the control element

Maximizing energy extraction while minimizing
energy spent on the e-beam 1onization

Minimizing adverse pressure gradients

Attaining prescribed values of flow variables at the
channel exit

Minimizing the entropy rise in the channel



i Performance Index

s Minimize
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Motivating the Cost-to-go
Approach

= We need a control approach that can
= work for nonlinear systems
= be data-based

= be applicable to infinite as well as finite horizon
problems

= casily adaptable



Motivating the Cost-to-go Approach...

Linear time invariant system:

x(k +1) = Ax(k) + Bu(k)
Parameterizing,

u(k) = Gx(k)

U

x(k +1) = (A+ BG) x(k)

U

Vik,G) =%i[x(k+i)T Ok +i)+u(k+i—1)" Ru(k+i—1)]

— X0 YJ(A+BG) O+ BG) +(4+BG " G'RGA+BO ik



Modified Approach:

Parameterize as,

u(k) =G,x(k)
u(k+1)=G,x(k)

u(k+r-1)=G.x(k)

U

x(k+i)=(A"+ A7'BG, +...+ ABG._, + BG.)x(k)
V (k)= %x(k)T[(A” +..+ ABG. + BG ) O(A" +...+ ABG., + BG.)

+..4(A+BG) O(A4+BG)+G'RG +...+ G, RG x(k)

Solution with a unique minimum



Formulation of the Control
Architecture: NN Controller

Use of the modified approach to formulate the control
architecture

Instead of a single controller structure (G), need 7’ controller
structures

Outputs of the 7’ controller structures, generate u(k) through
u(k+r-1)

Parameterize the 7’ controller structures using an effective
Neural Network

Neural u(k)

Network |“(v*V "
u(k+r-1)

x(k)

Controller




Formulation of the Control Architecture:
NN Cost-to-go Function Approximator

Parameterize the cost-to-go function using a Neural Network (CGA
Neural Network)

Inputs to the CGA Network:
x(k), u(k),...,.utk+r-1)

Use the analytical model, or a computer simulation or the physical
model to generate the future states.

Use the r’ control values and the 7’ future states to get the i1deal
cost-to-go function estimate.

Vik) :%Zr:[x(k+i)TQx(k+i)+u(k+i—1)TRu(k+i—1)]

i=]

Use this to train the CGA Neural Network



CGA Neural Network Training
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Bringing Structure to the CGA Network
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Neural Network Controller Training
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Salient Features of the
Formulation

Simplification of the optimization problem

Decoupled CGA network training and the controller network
training

Introduction of structure in the CGA network

Same basic architecture for linear or nonlinear systems.

Data-based implementation - No explicit analytical model
needed

Adaptive control architecture with the use of Neural
Networks



Translating the Approach to the
MHD problem

= In terms of the x-¢" equivalence, the problem 1s time-
dependent

= Optimization equivalent to the fixed end time optimal
control

= Procedure:
s Defining subnets
s Parameterizing and training the subnets
= Arranging them together to get the cost-to-go function V(0)

= Parameterizing and training the Neural Network controller



Defining and Parameterizing the Subnets
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Training Results for Subnet 1
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Training Results for Subnet 10
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Approximator

i Building the Cost-to-go

= Choice of the weighting coefficients
(q11,922,933,p11,p22,p33)

s Energy extracted-Energy used
= Pressure Profile

= Terminal conditions

= Translation of the integral into a summation.



Testing the CGA Network

qll =le-3,q22=1e-4,q33=0,pll =1e-4,p22 =1, p33 = le-2

Testing the CGA MNetworl
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i Neural Network Controller

Choice of a single control two-layer unit or multiple (25)
control two-layer units

Choice of number of hidden layer neurons
Training algorithm : Resilient Backpropagation

Inputs : Flow variables (density, velocity and pressure) at
the channel inlet.

Outputs: Electron beam current for the 25 groups of e-
beam windows along the channel.



Training the Neural Network Controller
qll =le-4,q22=1e-4,q33=0,pl1 =0,p22=0,p33 =0

izradient information for the Controller training
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Density profile along the channel, * - Constant current of 50 A/m?, - Random
current profile, A - Electron beam current profile with the Neural Network
controller (q11 = 5*q22)
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Comparison of different e-beam profiles
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P
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P

P

P

spent extr P, spent extr P, spent extr P
di (maxebe) | (maxebe) | o | (random (random | =" | (optebe) | (optebo) | & —
(le-4) (W) MW) spent ebe) ebe) spent (W) MW) spent
(kW) (MW)
1 300.3 1.918 6.39 114.6 1.359 11.86 | 276.5 1.889 | 6.83
2 300.3 1.918 6.39 149.8 1.512 10.09 175.2 1.733 | 9.89
4 300.3 1.918 6.39 148.2 1.569 10.58 109.3 1.513 | 13.85
6 300.3 1.918 6.39 149.2 1.590 10.65 72.1 1.317 | 18.27
8 300.3 1.918 6.39 135.5 1.451 10.72 52.2 1.177 | 22.54
10 300.3 1.918 6.39 145.9 1.492 10.22 39.0 1.055 |27.03
12 300.3 1.918 6.39 152.8 1.584 10.36 30.7 0962 |31.33
14 300.3 1.918 6.39 109.6 1.362 12.42 24.4 0.875 | 35.78
16 300.3 1.918 6.39 150.0 1.544 10.30 19.9 0.801 | 40.29
18 300.3 1.918 6.39 173.6 1.575 9.07 16.1 0.728 | 45.28
20 300.3 1.918 6.39 161.2 1.513 9.39 13.1 0.665 | 50.55

q22 = le-4,q33=0,pl1=0,p22=0,p33=0




Imposing Pressure Profile Penalty

= 33 relatively weighs the pressure profile
= Adverse pressure gradient towards the end of the channel
= Choose q33 of the form:

Adverse Pressure Gradient Penalizing Coefficient Profile
40 T T T 'r!l
' ]

as| £
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Power Analysis

qll =5,g22=1e-4, pl1 =0,p22=0,p33 =0

With q33 =0

*Power Extracted = 1.411 MW

"Power Spent = 88.27 kW

=Ratio of Power Extracted to Power Spent = 15.99

With g33 penalizing pressure profile
=Power Extracted = 1.043 MW

"Power Spent  =40.97 kW
=Ratio of Power Extracted to Power Spent = 25.47




i Other Interesting Cases

= Minimizing the Entropy Increase
= Specification of exit Mach number and Temperature

s Electron beam window failures



i Future Research Thoughts

= Implementation of a state-feedback form of the
controller
= Using sensor information
= Computational cost 1ssue for a longer channel

= Increasing the control resolution



Dynamic Programming Based
State-Feedback Architecture
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Conclusions

Formulation of the problem of performance optimization of
the MHD Generator as an optimal control problem

Implementation of the open loop architecture in terms of the
cost-to-go approach

Successful training of the CGA and the Controller

Results for the energy extraction, energy input and the
pressure profile terms in the cost function

Formulation of the dynamic programming based state-
feedback form of the control architecture



i Acknowledgements

s Dr. Mikhail Schneider, Professor Richard Miles -
Princeton University

s Dr. Paul Werbos - National Science Foundation
= Dr. Raymond Chase - ANSER Corporation




Conierence Papers:

[1] Kulkarni, N. V. and Phan, M. Q., “Data-Based Cost-To-Go Design for Optimal
Control,” AIAA Paper No. 2002-4668, AIAA Guidance, Navigation and
Control Conference, Monterey, California, August 2002.

[2] Kulkarni, N. V. and Phan, M. Q., “A Neural Network Based Design of Optimal
Controllers for Nonlinear Systems,” AIAA Paper No. 2002-4664, AIAA

Guidance, Navigation and Control Conference, Monterey, California, August
2002.

[3] Kulkarni, N. V. and Phan, M. Q., “Performance Optimization of the Hypersonic
Magneto-hydrodynamic Generator at the Engine Inlet,” accepted at the
AIAA/AAAF 11% International Space Planes and Hypersonics System and
Technologies Conference, Orleans, France, September 2002.



